
ProfileUnity™ with FlexApp™ Technology

FlexApp™ Packaging
Automation

Release 1.6.1
March 26, 2025

This guide has been authored by experts at Liquidware in order to provide information
and guidance concerning the ProfileUnity with FlexApp Packaging Automation frame-
work.

Information in this document is subject to change without notice. No part of this pub-
lication may be reproduced in whole or in part, stored in a retrieval system, or transmitted
in any form or any means electronic or mechanical, including photocopying and recording
for any external use by any person or entity without the express prior written consent of
Liquidware Lab

Liquidware Labs, Inc.

3600 Mansell Road
Suite 2000
Alpharetta, Georgia 30022
U.S.A.

Phone: 678-397-0450

Web: www.liquidware.com

© 2025 Liquidware Labs Inc. All rights reserved. Stratusphere, CommandCTRL, Pro-
fileUnity, FlexApp, FlexDisk, ProfileDisk, and FlexApp One are trademarks of Liquidware
Labs. All other products are trademarks of their respective owners.

http://www.liquidware.com/

Table of Contents
What’s New for FlexApp Packaging Automation? 1

Version 1.6.1 - Released March 27, 2025 1

What's New 1

Version 1.6.0 - Released November 20, 2024 1

Issues Resolved 1

Version 1.5.1 - Released February 28, 2024 1

Issues Resolved 1

Version 1.5.0 - Released November 8, 2023 1

What's New 1

Issues Resolved 4

Version 1.0.25 – Released August 18, 2021 4

FlexApp Packaging Automation Overview 5

Architecture and Multi-Admin Usage 6

Additional Architectural Considerations and Use Cases 7

Considerations 7

Automated captures as a part of DEVOPS 7

On-Agent scripted synchronous captures 8

FlexApp Packaging Automation Requirements 9

Primary Packaging Manager 9

Packaging Capture Agents 9

Network or Cloud Storage 10

Silent Install Requirement 10

Multi-Administrator Package Creation 10

Installation: FPA-Installer.exe Command Line Arguments 11

Setting Up FlexApp Packaging Automation 14

Preparing the Primary Packaging Manager 14

Preparing the Packaging Capture Agents 14

(Optional) Installing the Remote Packaging CLI 15

Testing Package Creation 16

Testing Scenario 16

Creating a Test PackagesFile and DefaultsJSON 16

Testing Your Packaging Job 17

PackagesFile and DefaultsJSON File Contents 19

Available Packaging Job Parameters 20

Notes About Encryption and Log Paths 26

Agent-Client.exe Commands 27

Primary-Client.exe Commands 32

Viewing the Automation API Documentation 39

Scenario 1 - Automated Packaging Queue / Batch Jobs 39

Scenario 2 - Single-instance capture scenarios / No batching 39

Getting Help 41

Using Online Resources 41

Contacting Support 41

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 1

What’s New for FlexApp Packaging Automation?

What’s New for FlexApp Packaging Automation?

Version 1.6.1 - Released March 27, 2025

What's New

l package-create.exe has been renamed to fpa-packager.exe.

l install agent now sends FQDN instead of IP when /PrimaryAddress is used to register with
a Primary-Service.

Version 1.6.0 - Released November 20, 2024

Issues Resolved

l Increased number of installers supported from three to ten, allowing for a single package to con-
tain a larger amount of installations.

l Added ability to configure package job retry behavior with the default behavior configured to retry
failed jobs equal to the number of agents available.

l User registry data from HKCU and HKU can now be excluded from capture with the default beha-
vior configured to still capture said data.

l Added support for AppData content capture.

Version 1.5.1 - Released February 28, 2024

Issues Resolved

l Fixed an issue where temporary installation directory was prematurely deleted.

Version 1.5.0 - Released November 8, 2023

What's New

l Service Account and User Compatibility Improvements:
o Service Account for Packaging: The automation framework now creates a default service
account for packaging applications, moving away from using the SYSTEM account. This
change enhances compatibility with various application captures, ensuring a smoother and
more reliable packaging process.

What’s New for FlexApp Packaging Automation?

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 2

o Case-Insensitive Usernames: Usernames for primary clients and agents are now treated
as case-insensitive, reducing potential issues related to user account discrepancies and
improving overall system resilience.

l Version Compatibility and Package Management:
o Component Version Matching: All installed FlexApp components, as well as those included
in the FlexApp One bundler, now match the version of the core FlexApp based on version
6.8.6. This ensures consistency and reliability across the entire FlexApp suite.

o FlexApp One Package Creation: During the packaging process, an associated FlexApp
One package is now automatically created, with any FlexApp One (FA1) arguments being
duly passed along.

o Package Versioning: Users now have the ability to apply versioning to the packages cre-
ated, allowing for better management and tracking of application layers.

o Continuous Capture: The automation framework supports continuous capture, allowing for
the replacement of existing packages in a ProfileUnity configuration with newly-created
packages.

o FPC "Offline Mode" Packages.xml Support: New packages can be added to a running
inventory outside of the ProfileUnity Console, a "packages.xml" file which can be opened
by the FlexApp Packaging Console in "Offline Mode".

l Performance and Efficiency Enhancements:
o API and Capture Timeouts: The wait time for various API timeouts has been reduced to 10
seconds, and the timeout for the capture process has been increased to 120 minutes. This
ensures a more efficient and timely packaging process.

o High-Compatibility Capturing: A new default capture mode, High-Compatibility Capturing,
has been added to enhance the success rate of application captures.

o OS Optimizations and Runtimes: The capture agent now performs automatic OS optim-
izations for the cleanest capture possible and installs common runtimes needed for com-
patibility.

l Capture Agent Enhancements and Installation:
o AppData Local and Roaming: Data from these locations is now captured by default and
copied in during playback or at logon for each assigned user.

o License File Handling: The capture agent installation process now supports defining the loc-
ation of a FlexApp One license file, ensuring it is copied to the correct directory. Addi-
tionally, the installation process automatically checks the current working directory for the
license file.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 3

What’s New for FlexApp Packaging Automation?

o Script and MSI Installer Improvements: MSI installers automatically call 'msiexec /i' with
appended '/qn', and script-based installers call the respective executable with appropriate
silent arguments.

o Agent Service Auto-Registration: During an "Install Agent", the /PrimaryAddress arguments
can be used to automatically register the new Agent with an existing Primary Packaging
Manager. In addition, the same arguments passed during an "Uninstall" will unregister the
Agent with a Primary Service during uninstallation.

o Script-based installation: Scripts can be called in place of an installer, locally downloading
the working directory to the capture machine so associated files are available when called
during installation. Depending on the extension of the file, scripts are automatically run by
the associated interpreter and include the respective silent installation switches.

l Cloud and Storage Enhancements:
o IAM Role-Based S3 Access: The capture process now supports IAM Role-based S3
access, eliminating the need for access keys and secrets.

o Custom Storage Locations: The framework now supports custom storage locations using
URI format for both S3 and Azure, providing additional flexibility in storage options.

o Block Caching Enhancements: Packages destined for cloud storage are processed, post-
capture, to ensure a successful initial playback even during times of poor network con-
ditions.

l Diagnostics and Logging:
o ProfileUnity Diagnostic Utility: The product now includes the ProfileUnity diagnostic utility,
offering enhanced diagnostics capabilities.

o Improved Logging: Logs created during package creation now have the package name pre-
pended to the filename, making it easier to identify and troubleshoot issues.

l User Interface and Help Improvements:
o Help Output Updates: Various areas of the 'help' output for the installer, client, and agent
have been updated and corrected, providing clearer guidance and support to users.

o Full API Documentation: Admins can enable the API documentation page on the Primary or
Agent Service, as-needed, when developing workflows and automation integration points.

l Error Handling and Validation:
o Capture Job Retries: The Primary Packaging Manager Service will retry certain types of fail-
ures as many times as there are Capture Agents. This helps keep overall success rate high
in the event a Capture Agent is experiencing an issue mid-job. If there were any, retry
counts would be included in the Job Summary.

What’s New for FlexApp Packaging Automation?

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 4

o Improved Error Pass-Through/Recording: Enhancements have been made to the error
pass-through and recording process from the capture agent to the client, ensuring that
issues are promptly identified and resolved.

o Validation Checks: Additional validation checks have been implemented against numerous
parameters passed during the packaging process, including files, paths, and credentials,
further ensuring the integrity of the packaging process.

l Command Line Interface (CLI) and Job Management:
o Enhanced CLI Support: The package creation process now accepts all possible packaging
arguments via CLI, and various 'agent' and 'packages' commands have been enhanced to
support passing primary credentials and other essential parameters.

o Job Filtering and Retry Mechanism: Users can now filter packaging jobs based on their
status, and failed captures are retried a number of times equal to the number of known
agents, improving the robustness of the packaging process.

Issues Resolved

l Fixed an issue where packages could be identically named

l Fixed an issue where packages failed to be created on Windows Server OS due to system
restore attempt.

l Fixed an issue where FPA-created packages were unable to be cloned in the FlexApp packaging
console in certain scenarios.

l Fixed an issue with packages that do not contain shortcuts fail to capture.

l Fixed an issue where an MSI installer path that contained spaces fail to capture.

l Fixed an issue where the Service would remain after a failed installation of either primary or
agent.

l Fixed an issue where lwl_proc_info system driver is not removed during uninstallation.

l Fixed an issue with Existing packages were unable to be extended.

l Fixed an issue with Creating packages directly on the client did not honor parameters present in
the argument file.

Version 1.0.25 – Released August 18, 2021

The first version of FlexApp Packaging Automation is released to market. This framework allows for mul-
tiple and concurrent unattended FlexApp Package captures.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 5

FlexApp Packaging Automation Overview

FlexApp Packaging Automation Overview
In some cases, one-off captures of applications for dynamic layering to end users can be repetitive and
time-consuming. This applies to any application layering or virtualization technology—call it capturing,
recording, or sequencing—packages or layers must be created and tested prior to being deployed to pro-
duction.

Some situations call for a more automated packaging process. Consider scenarios like migrating from
another application deployment tool or method to FlexApp, compliance-mandated scheduled applic-
ation updates, or even integrating FlexApp package creation as a component of a larger DevOps sys-
tem to reduce time and intervention in getting new software builds deployed to end users.

To address requests of this nature, Liquidware has created the FlexApp Packaging Automation
framework. FlexApp Packaging Automation (FPA), uses a Primary Packaging Manager to delegate
packaging jobs to a network of Packaging Capture Agents that execute the silent install commands, cap-
ture the software being installed, and create FlexApp packages on a network share that are immediately
ready to be assigned to end users.

Going deeper into these example scenarios:

l If an organization is using a tool like SCCM, Intune, etc. to push out silent installs to end users,
then migrating your application deployments to FlexApp can be accelerated using FlexApp Pack-
aging Automation by building packaging jobs using the installers and silent install commands
already contained in your current software deployment tool.

l If an internal policy requires some or all your end user software applications to be updated on a
recurring schedule, maybe for security or industry-compliance reasons, then FlexApp Packaging
Automation can be used to accelerate the repetitive re-packaging of the new versions to shorten
the time-to-live for version updates and reduce manual IT intervention.

l If an organization relies on an application that is developed in-house, FlexApp Packaging Auto-
mation can be called by the software build server as the last step of a DevOps process to create a
FlexApp package from the resultant binaries or installer. After the process is complete, that pack-
age shows in the ProfileUnity Console ready to be assigned to end users.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 6

Architecture and Multi-Admin Usage

Architecture and Multi-Admin Usage
There are various use cases one can come up with around the use of FlexApp Packaging Automation.
Here is one example of a common architecture that can help you plan your installation of FPA.

This architecture would allow packaging jobs to be submitted from the Primary Packaging Manager or
remotely by one or more admins using the Remote Packaging CLI. In addition, you can conserve
resources and use your existing ProfileUnity Management Console machine as the Primary Packaging
Manager.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 7

Additional Architectural Considerations and Use Cases

Additional Architectural Considerations and Use
Cases
There are more architectural considerations and use cases around the use of FlexApp Packaging Auto-
mation than those described in Architecture and Multi-Admin Usage. Here are additional use case
examples that can help you plan your installation of FPA.

Considerations

Some of the considerations are the following:

l Do you need to be able to perform multiple captures simultaneously?
o Maybe you do not need a Primary Packaging Manager; only a single Capture Agent.

l Do you need to integrate with an existing automation workflow?
o In addition to not needing a Primary Packaging Manager, maybe you do not use a ded-
icated Capture Agent and prefer to install the FPA Capture Agent on a machine to run syn-
chronous or in-line with an existing process or script.

Automated captures as a part of DEVOPS

For automation workflows that output updated applications on a regular basis, you can incorporate a
single Capture Agent machine without the need for a Primary Packaging Manager.

l The existing automation server would get the FPA Remote CLI installed, and optionally, a Default-
s.JSON file created with encrypted credentials and presets.

l The automation workflow would be appended with a call to the FPA Agent Service to start a cap-
ture of a script or silent installer, asynchronously or synchronously, on a remote Capture Agent
machine:

Agent-Client.exe Create Package /AgentAddress <https://agent-server:9074>
/AgentUsername "fpa_services" /AgentPassword "<pass>" /Name "<PackageName>"
/PackageVersion <n.n.n.n> /Path "\\fileserver\share\my-new-software-packages"
/Installer "\\fileserver\share\my-software\silent-installation-script.ps1"
/PathUsername "<domain\user>" /PathPassword "<pass>" /PuAddress
<https://ProuServerAddress:8000> /PuUsername "<domain\user>" /PuPassword
"<pass>"

Additional Architectural Considerations and Use Cases

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 8

On-Agent scripted synchronous captures

It is also possible to bypass the Agent Service of a Capture Agent and execute a capture directly on the
Capture Agent machine via the command line. This can help with scenarios where you need to run
scripts on the Capture Agent before a capture and then continue the script upon completion.

l The script could invoke a capture directly, in-session even, bypassing the Agent Service.

fpa-packager.exe Package /Name "<PackageName>" /PackageVersion <n.n.n.n> /Path
"\\fileserver\share\my-new-software-packages" /Installer "\\fileserver\share\my-
software\installation-script.bat" /NoSystemRestore

l The Package-Create process would end when the capture is complete and the script could con-
tinue and could then take action by moving the new package, etc.

l If executed in-session against an installer or script that is not silent, the user can interact with the
installer during capture.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 9

FlexApp Packaging Automation Requirements

FlexApp Packaging Automation Requirements
The FlexApp Packaging Automation framework is made up of a Primary Packaging Manager and one or
more Packaging Capture Agents that run the packaging jobs and place the resulting packages in the
specified storage locations. Capture Agent VMmust be 64-bit architecture.

Primary Packaging Manager

Component Minimum Requirements

Virtual
Machines

1 VM to be used as the Primary Packaging Manager. The ProfileUnity Management Console
can be used as the Primary Packaging Manager or a new VM can be created.

VM OS Sup-
port

Windows 10/11 or Windows Server 2016/2019/2022/2025

VM vCPU 2 vCPU

VMMemory 4 GB

VM Storage 1 GB free on C:

Prerequisites Microsoft® .NET 8.0 is automatically installed

Network and
Firewall

Primary Packaging Manager listens on TCP/9075 and connects to TCP/9074 on Packaging
Capture Agents.

Packaging Capture Agents

Component Minimum Requirements

Virtual
Machines

1+ 64-bit VM(s) to be used as Packaging Capture Agents
*Liquidware recommends 3+ VMs for large batch jobs and 2+ for linear/DEVOPS/one-off pro-
cessing to maintain redundancy.

VM OS Sup-
port

Windows 10/11 or Windows Server 2016/2019/2022/2025

VM vCPU 4+ vCPU

VMMemory 8+ GB

VM Storage 40 GB free on C:

VM Free
Space

Free disk space is needed locally, usually C:, on each Packaging Capture Agent VM for cap-
turing application installations. It is recommended to have at least double what you think you
will ever need for your largest capture.

FlexApp Packaging Automation Requirements

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 10

Component Minimum Requirements

Prerequisites Microsoft® .NET 8.0 is automatically installed.

Network and
Firewall

Packaging Capture Agents connect to TCP/9075 on Primary Packaging Manager.

Network or Cloud Storage

A network file share or a cloud location used to store new packages is required. In addition, storage for
the installer EXEs and MSIs that will be accessed by the Capture Agents will be needed.

Silent Install Requirement

Applications are required to install silently due to the headless nature of FPA. Most application installers
require the use of flags on the CLI to indicate a silent install. Test each installer’s silent install com-
mands manually prior to using in a packaging job. There must be no user-interaction involved during
install. Prompts will hang capture until the timeout.

Multi-Administrator Package Creation

When multiple package administrators are sending packaging jobs to the same Primary Packaging Man-
ager it is recommended that any PathUsername or InstallerUsername be a service account created for
this purpose and stored in the DefaultsJSON file. As a result, the service account will handle all file oper-
ations on the network share preventing the need for each admin to use their own credentials.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 11

Installation: FPA-Installer.exe Command Line Arguments

Installation: FPA-Installer.exe Command Line
Arguments
The following describes the available commands for FPA-Installer.exe. Be sure to wrap all complex
passwords in double-quotes like "&()[]{}^=;!'+,`~ my c0mpl3x PW". As a result of this requirement,
double quotes cannot be used in passwords or AES secrets. Paths that include a space also require
double quotes.

Notes about the different Username arguments:

l /PrimaryUsername and /AgentUsername are created as "internal FPA Service API users" that
do not exist as local Windows or Domain accounts. Using "fpa_services" is only a suggestion.

l /ServiceUsernamemust be a local Windows or Domain account. If a non-existent local account
is specified, it will be created as a non-Administrator user. Local accounts are specified by using
the format ".\username".

l If no /ServiceUsername is specified during a "Install Agent" command then a local, non-
Administrator Windows account named "fpa_services" will be created with a randomized and
unsaved password. (Not to be confused with the API accounts previously-mentioned.)

Command Description

Help Displays the command line options

Usage: fpa-installer.exe Help

Eula Extracts the embedded End-User License Agreement (EULA) to disk for review

Usage: fpa-installer.exe Eula

[/Path "<folder>"]

Install Agent Installs FPA Packaging Capture Agent

Usage: fpa-installer.exe Install Agent

/AgentUsername "fpa_services" /AgentPassword "<pass>"

[/Path "<folder>"]

[/Temp "<folder>"]

[/ServiceUsername "<domain\user>" /ServicePassword "<pass>"]

[/ServiceLogPath "<folder>"] [/ServiceLogLevel <level>]

[/Port <port>]

[/CertificateFile "<path\cert.pfx>" [/CertPassword "<pass>"]]

/AcceptEula

[/PrimaryAddress <https://server:9075> /PrimaryUsername "<user>"

Installation: FPA-Installer.exe Command Line Arguments

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 12

Command Description

/PrimaryPassword "<pass>"]

[/SkipOptimizations]

[/SkipRuntimes]

[/Fa1LicenseFile <path\FlexApp_One.lic>]

Install

Primary

Installs FPA Primary Packaging Manager

Usage: fpa-installer.exe Install Primary

/PrimaryUsername "fpa_services" /PrimaryPassword "<pass>"

[/Path "<folder>"]

[/Temp "<folder>"]

[/ServiceUsername "<domain\user>" /ServicePassword "<pass>"]

[/ServiceLogPath "<folder>"] [/ServiceLogLevel <level>]

[/Port <port>]

[/CertificateFile "<path\cert.pfx>" [/CertPassword "<pass>"]]

/AcceptEula

Install Installs FPA Remote Packaging CLI

Usage: fpa-installer.exe Install

[/Path "<folder>"]

[/Temp "<folder>"]

/AcceptEula

Uninstall Removes services and installed files but leaves behind .NET 5 and ProgramData

Usage: fpa-installer.exe Uninstall

[/Path "<folder>"]

To cause an Agent Service to remove itself from the Primary Service, include the following

options when uninstalling an Agent Service:
[/PrimaryAddress <https://server:9075> /PrimaryUsername "<user>"

/PrimaryPassword "<pass>"]

Defaults

By default, the primary-service and agent-service both run as Local System.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 13

Installation: FPA-Installer.exe Command Line Arguments

Command Line Option Default Setting

Eula [/Path] "%USERPROFILE%\Desktop"

Install * [/Path] "C:\Program Files (x86)\Liquidware Labs\FlexApp Packaging

Automation"

Install * [/Temp] "%TEMP%"

(Used for installation only)

Install * [/Ser-

viceLogPath]

"C:\Windows\Temp\fpa"

Install * [/Port] Primary=9075, Agent=9074

Uninstall [/Path] Path used during installation

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 14

Setting Up FlexApp Packaging Automation

Setting Up FlexApp Packaging Automation
Download the FlexApp Packaging Automation framework from the FlexApp Packaging Automation
page.

Note: FPA requires a set of internal credentials, such as prou_services, to secure the API.
These are specified during installation and consumed during package creation. They are not
used to access any resources and are not linked to Active Directory.

Preparing the Primary Packaging Manager

To prepare the Primary Packaging Manager, complete the following steps:

1. From an elevated Command Prompt, install the Primary Packaging Manager:

fpa-installer.exe install primary /PrimaryUsername "fpa_services"
/PrimaryPassword "<pass>" /AcceptEULA

2. If you want, add

"C:\Program Files (x86) \Liquidware Labs\FlexApp Packaging Automation"

to your PATH environment variable and open a new cmd.exe. Otherwise cd there now.

Preparing the Packaging Capture Agents

Liquidware recommends that required frameworks and runtimes be natively installed on end user and
Packaging Capture Agent VMs for reduced package overhead. This will happen automatically. In addi-
tion, the Capture Agent OS will be optimized for the same reason.

To prepare the Packaging Capture Agents, complete the following steps:

Setting Up FlexApp Packaging Automation

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 15

1. Create a new VM for use as a Packaging Capture Agent machine.

Note: An alternative method for creating Packaging Capture Agents is to clone your
existing, already-optimized FlexApp Packaging Console VM and then uninstall the FPC
software, reboot and that clone is ready to become an FPA Packaging Capture Agent.

2. From an elevated Command Prompt, install the Packaging Capture Agent:

fpa-installer.exe install agent /AgentUsername "fpa_services" /AgentPassword
"<pass>" /PrimaryAddress <https://primary:9075> /PrimaryUsername "fpa_services"
/PrimaryPassword "<password>" /AcceptEULA

3. Ensure you have a “clean state” snapshot taken after installing the Packaging Capture Agent to
which you can revert, if needed.

Note: The optional /PrimaryAddress arguments will auto-register this new agent with
your Primary Packaging Manager, saving you the step of running Add Agent using
Primary-Client.exe later. Agents added in this manner are registered using their
FQDN rather than IP address.

4. Verify your Agent using the primary-client.exe List Agent command.

(Optional) Installing the Remote Packaging CLI

To install the Remote Packaging CLI, complete the following steps:

1. If you want to run commands from another machine instead of needing to run them from the
Primary Packaging Manager, you can install the Remote Packaging CLI on another workstation:

fpa-installer.exe install /AcceptEULA

2. (Optional) Add the following to your PATH environment variable:

"C:\Program Files (x86)\Liquidware Labs\FlexApp Packaging Automation"

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 16

Testing Package Creation

Testing Package Creation

Testing Scenario

In this example, you will set up files that allow a packaging admin to save their credentials and only
need to provide the CryptoKey on the CLI when creating packages. This makes it more convenient to
share PackagesFiles with other admins since it would not need to contain login credentials and you also
would not need to specify them on the command line each time you run the Create Packages com-
mand.

Creating a Test PackagesFile and DefaultsJSON

To create a test PackagesFile and DefaultsJSON, complete the following steps:

1. From your Primary Packaging Manager or the Remote Packaging CLI, create your Pack-
agesFile from one of the following:

primary-client.exe Add PackagesFile /PackagesFile
"%USERPROFILE%\Desktop\PackagesFile.json" /Name "Notepad++ v8.1.1" /Path
"\\fileserver\FlexApp\Packages" /Installer
"\\fileserver\FlexApp\Installers\npp.8.1.1.Installer.exe" /InstallerArgs "/S"

primary-client.exe Add PackagesFile /PackagesFile
"%USERPROFILE%\Desktop\PackagesFile.json" /Name "PuTTY Utils v0.76" /Path
"\\fileserver\FlexApp\Packages" /Installer
"\\fileserver\FlexApp\Installers\putty-0.76-installer.msi"

2. Next, create the DefaultsJSON:

primary-client.exe Create DefaultsJSON /DefaultsJSON
"%USERPROFILE%\Desktop\defaults.json" /PrimaryUsername "fpa_services"
/PrimaryPassword "<pass>" /PathUsername "<domain\user>" /PathPassword "<pass>"
/PuAddress <https://ProuServerAddress:8000> /PuUsername "<domain\user>"
/PuPassword "<pass>"

Testing Package Creation

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 17

Testing Your Packaging Job

Test your packaging job by creating the specified packages. First check your Capture Agents are avail-
able:

Primary-Client.exe list agent /PrimaryUsername "fpa_services" /PrimaryPassword
"<pass>"

Method 1

Create Packages using PackagesFile and DefaultsJSON, wait for the job to finish:

primary-client.exe Create Packages /PackagesFile
"%USERPROFILE%\Desktop\PackagesFile.json" /DefaultsJSON
"%USERPROFILE%\Desktop\defaults.json" /WaitForDone

*Example console status when complete:

--

Batch Job Report

Total:1 Pending:0 Running:0 Successful:1 Failed:0 Cancelled:0

Batch Job Id:'9871' Status:'Successful'

 Start:'11/8/2024 10:04:11 AM' End:'11/8/2024 10:06:04 AM'

 Primary Job Name:'Notepad++' Id:'9f1b' Status:'Successful'

 Start:'11/8/2024 10:04:12 AM' End:'11/8/2024 10:05:44 AM'

 ExitCode:'0'

 Agent Job Name:'Notepad++' Id:'a9f5' Status:'Successful'

 Start:'11/8/2024 10:04:13 AM' End:'11/8/2024 10:05:43 AM'

 ExitCode:'0' RunLocation:'10.30.61.243'

--

Method 2

Create Packages using PackagesFile and DefaultsJSON in background, email results:

primary-client.exe create Packages /PackagesFile
"%USERPROFILE%\Desktop\PackagesFile.json" /DefaultsJSON
"%USERPROFILE%\Desktop\defaults.json" /MailServer <smtp.something.com> /MailFrom
<x@y.com> /MailTo <a@b.com>

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 18

Testing Package Creation

*Example email status when complete: (condensed)

Job Name Status Agent MM:SS Installer Installer
Args

Type VHD
MBs

Notepad++
v8.1.1

Successful Agent1 0:30 npp.8.1.1.In-
staller.exe

/S Cloud 196.00

PuTTY
Utils v0.76

Successful Agent2 0:31 putty-0.76-installer-
.msi

Cloud 164.00

Testing Package Creation

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 19

PackagesFile and DefaultsJSON File Contents

l The example file contents will look like this (excluding the unspecified parameters).
packagesfile.json
"Name": "Notepad\u002B\u002B v8.1.1"

"Path": "\\\\fileserver\\FlexApp\\Packages"

"Installer": "\\\\fileserver\\FlexApp\\Installers\\npp.8.1.1.Installer.exe"

"InstallerArgs": "/S"

"Name": "PuTTY Utils v0.76"

"Path": "\\\\fileserver\\FlexApp\\Packages"

"Installer": "\\\\fileserver\\FlexApp\\Installers\\putty-0.76-installer.msi"

defaults.json
"PrimaryUsername":

"537F6AA867FB405lookatmeimencrypted3u9Mt3sXxGcaigPxIngPqyw=="

"PrimaryPassword":

"537F6AA867FBlookatmeimencryptedz1MjK/h/ZdYpPBuMyg\u002BQ=="

"PathUsername": "537F6AA867FB4lookatmeimencryptedA8\u002BycoKQXBOgZ5g=="

"PathPassword": "537F6AA867FB40598lookatmeimencryptedVysei\u002BXyj1EJakAQ=="

"PuAddress": "https://MyProuServerAddress:8000"

"PuUsername": "537F6AA867FB405989836E5EDlookatmeimencrypted02BycoKQXBOgZ5g=="

"PuPassword": "537F6AA867FB4059898lookatmeimencryptedj1EJakAQ=="

l Editing your PackagesFile can be done with a text editor or by using primary-client.exe
(Add PackagesFile, Remove PackagesFile, List PackagesFile, Clear PackagesFile).

l The DefaultsJSON works a bit differently than the PackagesFile in that the primary-cli-
ent.exe Create DefaultsJSON command is used to completely overwrite the file with a new
file containing only the newly specified parameters. Therefore, a text editor is likely the easiest
method to adjust any non-encrypted values.

l When adding information into a PackagesFile or DefaultsJSON, you have two encryption
options for user/pass fields. Users can never see the credentials stored in these files. Refer to the
Notes About Encryption and Log Paths section of this guide for more information.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 20

Available Packaging Job Parameters

Available Packaging Job Parameters
The following list of parameters are available for use on the CLI and in the PackagesFile or Default-
sJSON. CLI usage requires a preceding / (ie, /Name "Some Application v1.0") and usage in a JSON file
requires the parameter to be in double quotes (ie, "Name":"Some Application v1.0").

Notes:

l Be sure to wrap all complex passwords like "&()[]{}^=;!'+,`~ my c0mpl3x PW" and paths that
include a space in double quotes.

l Double quotes cannot be used in passwords or AES secrets.

l /InstallerArgs (if any) must be quoted, be the last parameter, and inner quotes must be
escaped with \

l If /Installer points to a .msi, then /InstallerArgs will automatically be set to /i
"<installer.msi>" /qn and /Installer will implicitly become msiexe.exe, but you can still
use /InstallerArgs to provide additional args in this scenario.

l If multiple paths are provided to network shares, multiple credentials are provided, and they are
to the same server then either only use one set of credentials, or make the second reference to
the server be via ip.

l If a PackagesFile contains a parameter already set in DefaultsJSON, PackagesFile wins. If
parameter also included on CLI, CLI wins.

l All parameters are optional except Name, Path, and Installer

Job Parameter Description

Name
"<package-name>"

Package Name *(Required).

*Should be unique within a given packaging batch job.

Path
"<path>"

Target folder where the package(s) will be created *

(Required).

*Path ending in .vhdx will perform an Extend of existing

package.

*Cloud paths are supported –
s3://

az://

gs://

Available Packaging Job Parameters

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 21

Job Parameter Description

CustomStorageUrl
<url>

Custom S3 service URL or Azure endpoint suffix.

AzureMaximumConcurrency
<integer>

Azure download tuning.
Default: 64

AzureInitialTransferSizeMb
<integer>

Azure download tuning.
Default: 1

AzureMaximumTransferSizeMb
<integer>

Azure download tuning.
Default: 1

Installer
"<path>"

Path of the installer exe to be executed and captured *

(Required).

*CIFS path like \\server-
\share\folder\installer.exe, .msi or any

script file.*

Web URL's also supported.

InstallerArgs
"<args>"

Installer-specific silent install flags required for proper oper-

ation.

*Args must be wrapped in quotes (ie, "/S")

SizeGb
<integer>

Package VHDX size.

Default: (20GB)

Fixed Use Fixed VHDX (allocate all space now).

Default: Expandable (Grow as needed)

Test Plays back the package after save and takes screenshots.

Default: Don’t Test

PathUsername
"<domain\user>"

Username used to access the package’s path.

*Cloud paths use s3=Access Key, az=Account Name,

gs=<omit>

*Specifying a PathUsername of "IAM" will allow use of

Amazon S3 IAM credentials.

PathPassword
"<password>"

Password used to access the package’s path.

*Cloud use s3=Secret Key, az=Account Key,

gs=<credential.json>

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 22

Available Packaging Job Parameters

Job Parameter Description

InstallerUsername
"<domain\user>"

Username used to access the installer’s path.

InstallerPassword
"<password>"

Password used to access the installer’s path.

InstallerExitCode
<integer>

Expected installer SUCCESS exit code.

Default: 0

InstallerTimeoutMs
<integer>

How long to wait for an installer to finish before failing the cap-

ture.

Default: 3600000 (1hr)

PuAddress
<https://ProuServerNameOrIP:8000>

The ProfileUnity Console where new packages will be impor-

ted.

PuUsername
"<domain\user>"

Username used to access the ProfileUnity Console.

PuPassword
"<password>"

Password used to access the ProfileUnity Console.

NoSystemRestore Do not perform a System Restore rollback after cap-

ture/extend.

Default: False (Use System Restore to roll

back).

AltRestoreCmd
"<pathToScript>"

Instead of System Restore, use a rollback script after cap-

ture/extend.

*Runs from the Agent VM and implies NoSys-

temRestore=True

Default: Rollback determined by NoSystemRestore para-

meter.

AltRestoreCmdArgs
"<args>"

Args (if any) needed for the AltRestoreCmd

*Args must be wrapped in quotes (ie, "/S")

WaitAfterInstallerExitsMs
<integer>

How long to wait after installation ends before saving the cap-

ture.

Default: 0

Available Packaging Job Parameters

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 23

Job Parameter Description

DontCopyInstallerLocal Run the installer directly from the Installer path.

Default: Copy installers locally before executing

("C:\Windows\Temp\fpainstaller" or

"%TEMP%\fpainstaller")

CopyInstallerFolderLocal Copies the the folder containing installer files locally before

executing

Default: Do not copy installer folder

InstallerFolder
"<path>"

Path of the folder containing the installer files.

NoHCCapture Do not use high compatibility capture mode.

Default: False

Installer2
"<path>"

Path of an additional installer to be executed during the cap-

ture.

Installer10
"<path>"

Path of an additional installer to be executed during the cap-

ture.

Up to 10 installers are supported.

InstallerArgs2
"<args>"

InstallerArgs10
"<args>"

Installer-specific silent install flags required for proper oper-

ation.

*Args must be wrapped in quotes (ie,"/S")

InstallerExitCode2
<integer>

InstallerExitCode10
<integer>

Expected installer exit code used to determine successful

installation.

Default: 0

PreActivationScript
"<path>"

CMD file to include in package and execute before playback.

PostActivationScript
"<path>"

CMD file to include in package and execute after playback.

PreDeactivationScript
"<path>"

CMD file to include in package and execute before stopping

playback.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 24

Available Packaging Job Parameters

Job Parameter Description

PostDeactivationScript
"<path>"

CMD file to include in package and execute after stopping

playback.

NoCallToHome Do not send job Installer and InstallerArgs stats to

Liquidware

Default: False

PackageVersion
<major.minor.build.revision>

User specified version to help track package changes.

DontCreateFlexAppOne Do not automatically create a FlexApp One package.

FlexAppOneCliOverride
<args>

Custom FlexApp One bundler.exe command line arguments.

DontCaptureUserProfileData Do not capture user profile data.

DontCaptureUserRegistry Don’t capture user registry data from HKCU or HKU.

DontCapture Do not capture at all, just install.

PackagesXml Write a copy of package info into the specified packages.xml.

Primarily used by FlexApp Packaging Console in 'offline'

mode.

PuConfiguration
<configname>

Replaces an existing package in the specified configuration

with the created package.

*If defined, /PackageVersion and /PuFiltermust match

those of the existing package.

PuFilter
<filtername>

Add created package to flexapp rule with specified filter.

*Requires /PuConfiguration.

PuDescription
<descr>

Description to use when adding flexapp rule.

*Requires /PuConfiguration.

LogPath
"<path>"

Folder in which to store logs.

Default: "%TEMP%\fpa".

LogLevel
<level>

Logging level – Debug, Info, Warn, Error, Fatal

(Advanced Logging Levels: Console, Always).

Default: Debug

Available Packaging Job Parameters

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 25

Job Parameter Description

MailServer

<smtp.company.com>

(DefaultsJSON and CLI only)

SMTP server to use as a relay for job-related emails.

Default: No emails are sent unless specified

MailPort

<integer>

(DefaultsJSON and CLI only)

SMTP port used for MailServer.

Default: 25

MailSsl

(DefaultsJSON and CLI only)

Use SSL/TLS when connecting to MailServer.

Default: False (No SSL/TLS)

MailUsername

"<username>"

(DefaultsJSON and CLI only)

Username to use for relaying emails through

Mailserver.

MailPassword

"<password>"

(DefaultsJSON and CLI only)

Password to use for relaying emails through

Mailserver.

MailTo

<SomeGuy@company.com>

(DefaultsJSON and CLI only)

Email address that should receive job-related emails

*Required for /MailServer

MailFrom

<noreply@company.com>

(DefaultsJSON and CLI only)

Email address to show as sender of job-related emails.

*Required for /MailServer

CaptureRetryCount Number of times a capture job is attempted when a failure is

encountered.

Defult is the number of agents.

PrimaryAddress

<https://PrimaryNameOrIp:9075>

(DefaultsJSON and CLI only)

Primary Packaging Manager address.

Default: https://localhost:9075

PrimaryUsername

"fpa_services"

(DefaultsJSON and CLI only)

Primary Packaging Manager username.

PrimaryPassword

"<password>"

Primary Packaging Manager password.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 26

Available Packaging Job Parameters

Job Parameter Description

(DefaultsJSON and CLI only)

WaitForDone

(CLI only)

Wait for job to finish and allow job logs to be copied locally.

Default: Return to cmd prompt after submitting

packaging job

Crypto

Aes

(CLI only)

Encrypt the user/pass fields contained in the command line

w/Aes

*See the Notes About Encryption and Log Paths section

below for more information.

Default: Encrypt all user/pass fields using machine-specific
DpApi

CryptoKey

"<aes-secret-key>"

(CLI only)

AES Encryption Passphrase / Key.

*Implies /Crypto Aes

Notes About Encryption and Log Paths

When adding information into a PackagesFile or DefaultsJSON, you have two encryption options for
username and password fields. In any case, users can never see the credentials stored in these files–
they can only use them to process primary-client commands. If you do not specify /Crypt, the default
of DpApi is used.

l /Crypto DpApi is a self-contained, machine-based encryption using Windows Data Protection
API. Anyone with access to the machine can utilize (but not see) the credentials without needing
an encryption key. Files encrypted with this method cannot be moved to another machine. THIS
IS THE DEFAULT!

l /Crypto Aes is an AES-based encryption method utilizing a secret key and requires the key to
be passed on the command line with /CryptoKey to utilize (but not see) the credentials. Files
encrypted with this method can be shared between different machines as long as the secret key
is known. /CryptoKey implies /Crypto Aes.

l /LogPath and /LogLevel used on the CLI apply only to the primary-client.exe log for the
current command. "LogPath" and "LogLevel" used within a JSON file apply only to the cap-
ture job log on the capture agent. There is no automatic authentication for a UNC-based
LogPath so the capture agent’s machine account or service account will need “unprompted
access” to the LogPath.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 27

Agent-Client.exe Commands

Agent-Client.exe Commands
The following describes the available commands for agent-client.exe. Be sure to wrap all complex pass-
words in double-quotes like "&()[]{}^=;!'+,`~ my c0mpl3x PW". As a result of this requirement, double
quotes cannot be used in passwords or AES secrets. Paths that include a space also require double
quotes.

Command Description

Help Displays the command line options

Usage: agent-client.exe Help

Create Package Creates a new package

Usage: agent-client.exe Create Package

[/AgentAddress <https://server:9074>] /AgentUsername <user>

/AgentPassword "<pass>"

[/ArgFile <path\agent-client.args.json>]

[/CryptoKey "<my-aes-secret-key>"]

/Name "<name>"

/Path <path> *SEE BELOW

[/PathUsername <domain\user> /PathPassword "<pass>"]

[/AzureMaximumConcurrency <int>] -Azure download tuning. Default 64.

[/AzureInitialTransferSizeMb <int>] -Azure download tuning. Default 1.

[/AzureMaximumTransferSizeMb <int>] -Azure download tuning. Default 1.

[/CustomStorageUrl <url> (Custom S3 service URL or Azure endpoint suffix)].

[/SizeGb <GBs>] –Defaults to 20GB

[/Fixed] –Creates a fixed vhdx instead of the default expandable.

[/Test] –Leaves some .bmp files behind to make it easier to see what shortcuts were cap-

tured.

[/PuAddress <https://pu.server:8000> /PuUsername "<domain\user>"

/PuPassword "<pass>"] –Registers new packages in inventory.

/Installer <path\installer.exe> **SEE BELOW

[/InstallerUsername <domain\user> /InstallerPassword "<pass>"]

[/InstallerArgs <args>]

[/InstallerExitCode <int>] –Expected installer exit code, else error. Default 0

Agent-Client.exe Commands

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 28

Command Description

[/InstallerTimeoutMs <ms>] –How long to wait for the installer to finish, else error.

Default 1hr

[/WaitAfterInstallerExitsMs <ms>] –Wait after installer exits before completing

capture. Default 0

[/DontCopyInstallerLocal] –Will not copy the installer locally before running the

installer. Default false; Does copy.

[/CopyInstallerFolderLocal] –Copies the folder containing the installer file locally

before executing. Default false except for script installers.

[/InstallerFolder <path>] –Change from the default installer path of the folder con-

taining the installer to a custom path to be copied locally before executing the installer.

[/NoHCCapture] –Do not use high compatibility capture mode. Default false; Use HC

Mode.

[/NoSystemRestore] –Do not perform a System Restore rollback at the end of the cap-

ture/extend. Default false; use System Restore to rollback.

[/AltRestoreCmd <path\file>] –Instead of using System Restore, use a cmd to roll-

back, implies /NoSystemRestore.

[/AltRestoreCmdArgs <args>]

[/Installer2 <path\installer.exe> **SEE BELOW

[/InstallerArgs2 <args>]

[/InstallerExitCode2 <int>]]

...

[/Installer10 <path\installer.exe> **SEE BELOW

[/InstallerArgs10 <args>]

[/InstallerExitCode10 <int>]]

[/PreActivationScript <path\file>]

[/PostActivationScript <path\file>]

[/PreDeactivationScript <path\file>]

[/PostDeactivationScript <path\file>]

[/NoCallToHome] –Do not send installer and installer args data to Liquidware.

[/PackageVersion <major.minor.build.revision>] –User specified version to

help track package changes.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 29

Agent-Client.exe Commands

Command Description

[/DontCreateFlexAppOne] –Do not automatically create a FlexApp One EXE. Default

false; Do create EXE.

[/FlexAppOneCliOverride <args>] –Custom FlexApp One Bundler command line

args.

[/DontCaptureUserProfileData] –Do not capture user profile data.

[/DontCaptureUserRegistry] –Don’t capture user registry data from HKCU or HKU.

[/DontCapture] –Do not capture at all, just install.

[/PackagesXml] –Write a copy of package info into the specified packages.xml so it can be

inventoried using FlexApp Packaging Console in "Offline Mode".

[/PuConfiguration <configname> /PuFilter <filtername> [/PuDe-

scription <descr>]] –Replaces existing package in specified configuration with created

package. /Name and /PuFilter must match existing package assignment, with differing /Pack-

ageVersion values.

Create ArgFile

(Optional, omit

all params to get

an empty tem-

plate file)

Creates optional ArgFile with default params used by packaging jobs

Usage:

agent-client.exe Create ArgFile

/ArgFile<path\defaults.json>

[/Crypto Aes /CryptoKey "<my-aes-secret-key>"]

[/MailServer <smtp.something.com>

/MailTo <a@b.com>

/MailFrom <x@y.com>

[/MailPort <integer>] [/MailSsl]

[/MailUsername <domain\user> /MailPassword "<pass>"]]

[--All 'Add PackagesFile' parameters are supported here--]

Get Job Gets info on an existing job.

Usage:

agent-client.exe Get Job

[/AgentAddress <https://server:port>]

/AgentUsername <user>

/AgentPassword "<pass>"

[/ArgFile <path\agent-client.args.json>]

Agent-Client.exe Commands

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 30

Command Description

[/CryptoKey "<my-aes-secret-key>"]

[/Id <id>]

Get Status Gets status info on the agent-service

Usage:

agent-client.exe Get Status [/AgentAddress <https://server:port>]

/AgentUsername <user>

/AgentPassword "<pass>"

[/ArgFile <path\agent-client.args.json>][/CryptoKey "<my-aes-

secret-key>"]

Footnotes:

* /Path –Specifies the folder where the packages will be created

l Specifying a /Path ending in a FlexApp package's filename.vhdx will perform an extend of that existing

package.

l Specifying a /PathUsername of "IAM" will attempt to use the Agent machine's assigned IAM roles to

access the S3 bucket.

l There are several ways to use /Path, depending on your target storage platform:

o /Path "<\\server\share\target-path>" [/PathUsername "<domain\user>"

/PathPassword "<pass>"]

o /Path <s3://bucket/folder> /PathUsername <access key> /PathPassword

<secret key>

o /Path <s3://bucket/folder> /PathUsername "IAM"

o /Path <az://bucket/folder> /PathUsername <account name> /PathPassword

<account key>

o /Path <gs://bucket/folder> /PathPassword "<path\credential.json>"

** /Installer –Specifies what should be installed, or executed and captured

l /Installer –Supports several file types beyond EXE's and depending on the file extension, are
automatically called by the associated interpreter:

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 31

Agent-Client.exe Commands

o MSI files will be automatically run via:

msiexec.exe /i /qn.

Additional Arguments can be passed in via /InstallerArgs.

o Batch scripts (bat,cmd) are run via:
cmd.exe /C "installerscript.bat" "</InstallerArgs>"

o Windows Script Host files (vbs,vbe,wsf,wsc,js) are run via:
cscript.exe /b /nologo "installerscript.vbs" "</InstallerArgs>"

o Powershell (ps1) are run via:
powershell.exe -ExecutionPolicy Bypass -NoProfile -WindowStyle Hidden -

NonInteractive -File "installerscript.ps1" "</InstallerArgs>"

l /Installer –Copies the specified file into the local temp folder before executing it unless
/DontCopyInstallerLocal is specified.

o If the file specified is a script, then /CopyInstallerFolderLocal will be enabled so that

supporting files are included.

o The "InstallerFolder" is the folder containing the specified /Installer file unless otherwise

specified using /InstallerFolder.

o /InstallerFolder implies /CopyInstallerFolderLocal.

l /Installer –Supports local disk paths, CIFS shares and http(s) URLs.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 32

Primary-Client.exe Commands

Primary-Client.exe Commands
The following describes the available commands for primary-client.exe:

Notes:

l Be sure to wrap all complex passwords like "&()[]{}^=;!'+,`~ my c0mpl3x PW" and paths that
include a space in double quotes.

l Double quotes cannot be used in passwords or AES secrets.

l /InstallerArgs (if any) must be quoted, be the last parameter, and inner quotes must be
escaped with \

l If /Installer points to a .msi, then /InstallerArgs will automatically be set to /i
"<installer.msi>" /qn and /Installer will implicitly become msiexe.exe, but you can still
use /InstallerArgs to provide additional args in this scenario.

l If multiple paths are provided to network shares, multiple credentials are provided, and they are to
the same server then either only use one set of credentials, or make the second reference to the
server be via ip.

l If a PackagesFile contains a parameter already set in DefaultsJSON, PackagesFile wins. If para-
meter also included on CLI, CLI wins.

Command Description

Help Displays the command line options

Usage: primary-client.exe Help

Add Pack-

agesFile

(omit all params

to get an empty

template file)

Creates or appends to a PackageFile

Usage: primary-client.exe Add PackagesFile

/PackagesFile <path\packagesfile.json (or .csv)>

[/CryptoKey "<my-aes-secret-key>"]

/Name "<name>"

/Path <path> *SEE BELOW

[/PathUsername <domain\user> /PathPassword "<pass>"]

[/AzureMaximumConcurrency <int>] -Azure download tuning. Default 64.

[/AzureInitialTransferSizeMb <int>] -Azure download tuning. Default 1.

[/AzureMaximumTransferSizeMb <int>] -Azure download tuning. Default 1.

[/CustomStorageUrl <url> (Custom S3 service URL or Azure endpoint

suffix)]

Primary-Client.exe Commands

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 33

Command Description

[/SizeGb <GBs>] –Defaults to 20GB.

[/Fixed] –Creates a fixed vhdx instead of the default expandable.

[/Test] –Leaves some .bmp files behind to make it easier to see what shortcuts were cap-

tured.

[/PuAddress <https://pu.server:8000> /PuUsername "<domain\user>"

/PuPassword "<pass>"] –Registers new packages in inventory.

/Installer <path\installer.exe> **SEE BELOW

[/InstallerUsername <domain\user> /InstallerPassword "<pass>"]

[/InstallerArgs <args>]

[/InstallerExitCode <int>] –Expected installer exit code, else error. Default 0.

[/InstallerTimeoutMs <ms>] –How long to wait for the installer to finish, else error.

Default 1hr.

[/WaitAfterInstallerExitsMs <ms>] –Wait after installer exits before completing cap-

ture. Default 0.

[/DontCopyInstallerLocal] –Will not copy the installer locally before running the

installer. Default false; Does copy.

[/CopyInstallerFolderLocal] –Copies the folder containing the installer file locally

before executing. Default false except for script installers.

[/InstallerFolder <path>] –Change from the default installer path of the folder con-

taining the installer to a custom path to be copied locally before executing the installer.

[/NoHCCapture] –Do not use high compatibility capture mode. Default false; Use HC

Mode.

[/NoSystemRestore] –Do not perform a System Restore rollback at the end of the cap-

ture/extend. Default false; use System Restore to rollback.

[/AltRestoreCmd <path\file>] –Instead of using System Restore, use a cmd to roll-

back, implies /NoSystemRestore.

[/AltRestoreCmdArgs <args>]

[/Installer2 <path\installer.exe> **SEE BELOW

[/InstallerArgs2 <args>]

[/InstallerExitCode2 <int>]]

...

[/Installer10 <path\installer.exe> **SEE BELOW

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 34

Primary-Client.exe Commands

Command Description

[/InstallerArgs10 <args>]

[/InstallerExitCode10 <int>]]

[/PreActivationScript <path\file>]

[/PostActivationScript <path\file>]

[/PreDeactivationScript <path\file>]

[/PostDeactivationScript <path\file>]

[/NoCallToHome] –Do not send installer and installer args data to Liquidware.

[/PackageVersion <major.minor.build.revision>] –User specified version to

help track package changes.

[/DontCreateFlexAppOne] –Do not automatically create a FlexApp One EXE. Default

false; Do create EXE.

[/FlexAppOneCliOverride <args>] –Custom FlexApp One Bundler command line

args.

[/DontCaptureUserProfileData] –Do not capture user profile data.

[/DontCaptureUserRegistry] –Don’t capture user registry data from HKCU or HKU.

[/DontCapture] –Do not capture at all, just install.

[/PackagesXml] –Write a copy of package info into the specified packages.xml so it can be

inventoried using FlexApp Packaging Console in "Offline Mode".

[/PuConfiguration <configname> /PuFilter <filtername> [/PuDe-

scription <descr>]] –Replaces existing package in specified configuration with created

package. /Name and /PuFiltermust match existing package assignment, with differing

/PackageVersion values.

List Pack-

agesFile

(or view the file

by hand)

List package information from an existing PackagesFile

Usage: primary-client.exe –List PackagesFile
/PackagesFile <path\packagesfile.json (or .csv)>

Remove Pack-

agesFile

(or edit the file

by hand)

Removes <package name> from an existing PackagesFile

Usage: primary-client.exe –Remove PackagesFile
/PackagesFile <path\packagesfile.json (or .csv)>

/Name <package name>

Clear Pack-

agesFile

Removes ALL entries from an existing packages file

Usage: primary-client.exe –Clear PackagesFile

Primary-Client.exe Commands

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 35

Command Description

(or edit the file

by hand)

/PackagesFile <path\packagesfile.json (or .csv)>

Create Default-

sJSON

(Optional, omit

all params to get

an empty tem-

plate file)

Creates optional DefaultsJSON with default params used by packaging jobs

Usage: primary-client.exe –Create DefaultsJSON
/DefaultsJSON <path\defaults.json>

/CryptoKey "<my-aes-secret-key>"]

[/MailServer <smtp.something.com>

/MailTo <a@b.com>

/MailFrom <x@y.com>

[/MailPort <integer>] [/MailSsl]

[/MailUsername <domain\user> /MailPassword "<pass>"]]

[--All 'Add PackagesFile' parameters are supported here--]

List Default-

sJSON

(or view the file

by hand)

List parameters from a DefaultsJSON file

Usage: primary-client.exe –List DefaultsJSON
/DefaultsJSON <path\defaults.json>

Create Pack-

ages

Creates the packages listed on the CLI or in the specified file(s)

Usage: primary-client.exe –Create Packages
[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

/PackagesFile <path\packagesfile.json (or .csv)>

[/DefaultsJSON <path\defaults.json>]

[/CryptoKey "<my-aes-secret-key>"]

[/MailServer <smtp.something.com>

/MailTo <a@b.com>

/MailFrom <x@y.com>

[/MailPort <integer>] [/MailSsl]

[/MailUsername <domain\user> /MailPassword "<pass>"]]

[/WaitForDone]

[/JobFilter <JobStatus>] –Pending, Running, Successful, Failed, or Cancelled.

[/CaptureRetryCount <Int>] -Defaults to number of agents, Zero means no retries.
[--All 'Add PackagesFile' parameters are supported here--]

Status Pack-

ages

Retrieves the status of Create Packages batch jobs

Usage: primary-client.exe –Status Packages

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 36

Primary-Client.exe Commands

Command Description

[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

[/Id <guid>]

[/DefaultsJson <path\defaults.json>]

[/CryptoKey "<my-aes-secret-key>"]

[/JobFilter <JobStatus>] –Pending, Running, Successful, Failed, or Cancelled.

Wait Packages Waits for a currently running create packages batch job to complete

Usage: primary-client.exe –Wait Packages
[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

/Id <guid>

[/DefaultsJson <path\defaults.json>]

[/CryptoKey "<my-aes-secret-key>"]

[/JobFilter <JobStatus>] –Pending, Running, Successful, Failed, or Cancelled.

Add Agent Adds a Capture Agent to the Primary Packaging Manager

Usage: primary-client.exe –Add Agent
[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

/AgentAddress <https://server:9074>

/AgentUsername <user> /AgentPassword "<pass>"

[/DefaultsJson <path\defaults.json>]

[/CryptoKey "<my-aes-secret-key>"]

Remove Agent Removes a Capture Agent from the Primary Packaging Manager

Usage: primary-client.exe –Remove Agent
[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

/AgentAddress <https://server:9074>

[/DefaultsJson <path\defaults.json>]

[/CryptoKey "<my-aes-secret-key>"]

List Agent Lists all Capture Agents currently added to the Primary Packaging Manager

Usage: primary-client.exe –List Agent
[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

[/DefaultsJson <path\defaults.json>]

Primary-Client.exe Commands

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 37

Command Description

[/CryptoKey "<my-aes-secret-key>"]

Clear Agent Deletes ALL Capture Agents from the Primary Packaging Manager

Usage: primary-client.exe –Clear Agent
[/PrimaryAddress <https://server:9075>]

/PrimaryUsername <user> /PrimaryPassword "<pass>"

[/DefaultsJson <path\defaults.json>]

[/CryptoKey "<my-aes-secret-key>"]

Footnotes:

* /Path –Specifies the folder where the packages will be created

l Specifying a * /Path ending in a FlexApp package's filename.vhdx will perform an extend of that

existing package.

l Specifying a * /PathUsername of "IAM" will attempt to use the Agent machine's assigned IAM roles to

access the S3 bucket.

l There are several ways to use * /Path, depending on your target storage platform:

o /Path "<\\server\share\target-path>" [/PathUsername "<domain\user>"

/PathPassword "<pass>"]

o /Path <s3://bucket/folder> /PathUsername <access key> /PathPassword

<secret key>

o /Path <s3://bucket/folder> /PathUsername "IAM"

o /Path <az://bucket/folder> /PathUsername <account name> /PathPassword

<account key>

o /Path <gs://bucket/folder> /PathPassword "<path\credential.json>"

** /Installer –Specifies what should be installed, or executed and captured

l /Installer –Supports several file types beyond EXE's and depending on the file extension, are

automatically called by the associated interpreter:

o MSI files will be automatically run via:

msiexec.exe /i /qn.

Additional Arguments can be passed in via /InstallerArgs.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 38

Primary-Client.exe Commands

o Batch scripts (bat,cmd) are run via:
cmd.exe /C “installerscript.bat” "</InstallerArgs>"

o Windows Script Host files (vbs,vbe,wsf,wsc,js) are run via:
cscript.exe /b /nologo “installerscript.vbs” "</InstallerArgs>"

o Powershell (ps1) are run via:
powershell.exe -ExecutionPolicy Bypass -NoProfile -WindowStyle Hidden -

NonInteractive -File “installerscript.ps1” "</InstallerArgs>"

l /Installer –Copies the specified file into the local temp folder before executing it unless

/DontCopyInstallerLocal is specified.

o If the file specified is a script, then /CopyInstallerFolderLocal will be enabled so that

supporting files are included.

o The "InstallerFolder" is the folder containing the specified /Installer file unless otherwise

specified using /InstallerFolder.

o /InstallerFolder implies /CopyInstallerFolderLocal.

l /Installer –Supports local disk paths, CIFS shares and http(s) URLs.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 39

Viewing the Automation API Documentation

Viewing the Automation API Documentation
The FlexApp Packaging Automation API can be used to integrate silent, automatic capturing of
FlexApp, and FlexApp One packages into existing automation platforms or scripts.

Scenario 1 - Automated Packaging Queue / Batch Jobs

FPA Primary Package Manager and FPA Package Capture Agent(s) used in a "queue-like" manner.
The Primary Package Manager accepts capture job submissions and submits them to available Pack-
age Capture Agent(s). Jobs can be submitted in batches or singularly.

1. Enable the API documentation "Swagger" page on the Primary Service and restart it.

2. At an elevated cmd prompt, enter the following:

"C:\Program Files (x86)\Liquidware Labs\FlexApp Packaging Automation\Primary-
Service.exe" update /EnableSwagger
 net stop lw-primary-service
 net start lw-primary-service

Note: You can now see the available API endpoints by accessing the Primary Service's web
port: https://<primaryName>:9075/

3. To disable the API Swagger page, re-run the same commands used to enable it, except omit the
/EnableSwagger argument.

Scenario 2 - Single-instance capture scenarios / No batching

FPA Package Capture Agent used in standalone, single-threaded manner as part of existing auto-
mation or script workflows. This can be used in a DEVOPS scenario where an internal application is
updated/built regularly. The new builds can automatically, and immediately, be captured as a FlexApp
and FlexApp One package.

1. Enable the API documentation "Swagger" page on the Agent Service and restart it.

2. At an elevated cmd prompt, enter the following:

"C:\Program Files (x86)\Liquidware Labs\FlexApp Packaging Automation\Agent-
Service.exe" update /EnableSwagger
 net stop lw-agent-service
 net start lw-agent-service

Viewing the Automation API Documentation

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 40

Note: You can now see the available API endpoints by accessing the Agent Service's web
port: https://<primaryName>:9075/

3. To disable the API Swagger page, re-run the same commands used to enable it, except omit the
/EnableSwagger argument.

Note: For additional information, or to download the latest version of FlexApp Packaging Auto-
mation, please refer to the FlexApp Packaging Automation documentation.

ProfileUnity with FlexApp Technology: FlexApp Packaging Automation 41

Getting Help

Getting Help
If you have questions or run into issues while using our software, Liquidware is here to help. Our goal is
to provide you with the knowledge, tools, and support you need.

Using Online Resources

Liquidware maintains various kinds of helpful resources on our Customer Support Portal. If you have
questions about your product, use these online resources. The Support Portal includes product forums
and a searchable knowledge base, as well as the ability to submit a case to the Liquidware Support sys-
tem on the Liquidware Customer Support Portal. For product documentation, refer to our Liquidware
Document Repository.

Contacting Support

If you need to contact our Support staff for technical assistance, log a request on the Liquidware Cus-
tomer Support Portal. Prior to logging a case you should review these helpful tips:

l Check the Product Documentation included with your Liquidware Product.

l Try to see if the problem is reproducible.

l Check to see if the problem is isolated to one machine or more.

l Note any recent changes to your system and environment.

l Note the version of your Liquidware product and environment details such as operating system,
virtualization platform version, etc.

https://www.liquidware.com/support
https://www.liquidware.com/support
https://docs.liquidware.com/
https://docs.liquidware.com/
https://www.liquidware.com/support
https://www.liquidware.com/support
https://docs.liquidware.com/

	What’s New for FlexApp Packaging Automation?
	Version 1.6.1 - Released March 27, 2025
	What's New

	Version 1.6.0 - Released November 20, 2024
	Issues Resolved

	Version 1.5.1 - Released February 28, 2024
	Issues Resolved

	Version 1.5.0 - Released November 8, 2023
	What's New
	Issues Resolved

	Version 1.0.25 – Released August 18, 2021

	FlexApp Packaging Automation Overview
	Architecture and Multi-Admin Usage
	Additional Architectural Considerations and Use Cases
	Considerations
	Automated captures as a part of DEVOPS
	On-Agent scripted synchronous captures

	FlexApp Packaging Automation Requirements
	Primary Packaging Manager
	Packaging Capture Agents
	Network or Cloud Storage
	Silent Install Requirement
	Multi-Administrator Package Creation

	Installation: FPA-Installer.exe Command Line Arguments
	Setting Up FlexApp Packaging Automation
	Preparing the Primary Packaging Manager
	Preparing the Packaging Capture Agents
	(Optional) Installing the Remote Packaging CLI

	Testing Package Creation
	Testing Scenario
	Creating a Test PackagesFile and DefaultsJSON
	Testing Your Packaging Job
	PackagesFile and DefaultsJSON File Contents

	Available Packaging Job Parameters
	Notes About Encryption and Log Paths

	Agent-Client.exe Commands
	Primary-Client.exe Commands
	Viewing the Automation API Documentation
	Scenario 1 - Automated Packaging Queue / Batch Jobs
	Scenario 2 - Single-instance capture scenarios / No batching

	Getting Help
	Using Online Resources
	Contacting Support

	Bookmarks
	NotesAboutEncryption

